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Synopsis  Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling ap-
petite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such
that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid produc-
tion directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels
during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited
studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental
programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where
leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal
glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases gluco-
corticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and
glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.
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Fig. | Counterregulatory interaction between GCs and leptin in
regulating hormone levels and food intake. Solid black lines:
stimulatory effect; dashed black lines: inhibitory effect; solid gray
line: apparent/hypothesized inhibitory effect (lacks adequate
evidence); PVN: paraventricular nucleus; VMN: ventromedial
nucleus; ARC: arcuate nucleus; AGRP: agouti-related protein; NPY:
neuropeptide Y; POMC: proopiomelanocortin; CART: cocaine- and
amphetamine-regulated transcript; CRF: corticotropin-releasing
factor; ACTH: adrenocorticotropic hormone; GC: glucocorticoid;
CRF|R: CRF receptor |;and CRF;R: CRF receptor 2.

adrenals (Gesina et al. 2004; Forhead and Fowden 2009;
De Guia et al. 2014; Nicolaides et al. 2014; Paul et al.
2022). This negative feedback loop is crucial to maintain
baseline GC levels to protect the body from the harm-
ful effects of GC overexposure (Fig. 1). Leptin is a cy-
tokine hormone secreted mainly by adipose tissue regu-
lating appetite and energy balance (Tartaglia et al. 1995;
Heiman et al. 1997; Clément et al. 1998; Dallongeville et
al. 1998). Circulating leptin suppresses appetite directly
by increasing the activity of anorexigenic proopiome-
lanocortin (POMC) and cocaine- and amphetamine-
regulated transcript (CART) neurons, and indirectly by
decreasing the activity of the orexigenic agouti-related
protein (AGRP) and neuropeptide Y (NPY) neurons
in the arcuate nucleus of the hypothalamus (Fig. 1;
Ostlund et al. 1996; Elias et al. 1998; Minocci et al. 2000;
Cowley et al. 2001; Flak and Myers 2016). Also, through
a negative feedback loop, leptin downregulates its own
production directly by reducing leptin mRNA and in-
directly through the breakdown of adipose tissue de-
posits releasing fatty acids and glycerol (Frithbeck et al.
1997; Wang et al. 1999). Apart from the adipose tis-
sue, leptin is produced in small quantities by the brain,
placenta, skeletal muscles, mammary gland, bone mar-
row, and stomach (Obradovic et al. 2021). In addition to
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independently regulating appetite and metabolism, for
more than two decades we have known that leptin and
GCs counterregulate each other to fine-tune energy in-
take and expenditure in adults (Bornstein et al. 1997; De
Vos et al. 1998; Solano and Jacobson 1999; Askari et al.
2000; Nye et al. 2000).

Fetal development is associated with dramatic mor-
phological and physiological changes coordinated by a
network of autocrine, paracrine, and endocrine factors
and the hormones with well-established roles in fetal
development include GCs, thyroid hormone, and in-
sulin. For example, GCs are necessary for efficient mat-
uration of multiple organs, mainly lungs, brain, heart,
liver, and kidneys (Turkay et al. 2012). Lack of GC sig-
naling in tissue-specific or constitutive glucocorticoid
receptor (GR) knockout mammals results in a range of
debilitating phenotypes such as death at birth, abnormal
growth and development, and adult disease phenotypes
(Wyrwoll and Holmes 2012; Whirledge and Defranco
2018). Leptin is among the hormones with less recog-
nized roles in development. Our current understand-
ing about the significance of leptin during fetal develop-
ment mostly stems from rodent models, which have re-
ported expression of leptin receptor and leptin synthesis
in the placenta and several fetal organs like brain, heart,
bone, cartilage, lung, liver, and kidney (Dallongeville et
al. 1998; Gorska et al. 2009; Haggard et al. 1998). Lep-
tin antagonism can adversely affect the maturation of
kidney, pancreas, brain, lungs, and ovary (Steppan and
Swick 1999; Huang et al. 2008; Attig et al. 2011; Briffa
et al. 2015; De Blasio et al. 2016). However, the lack of
experimental investigations based on primate and hu-
man models obscures our understanding of the abso-
lute necessity of leptin for human organogenesis and the
development of therapeutics targeting disorders arising
from abnormal leptin signaling. Apart from their in-
dependent role in modulating fetal development, GCs
and leptin frequently interact with each other to effi-
ciently regulate organogenesis. (Bernstein et al. 1983;
De Groef et al. 2013; Sachs and Buchholz 2019). For
example, decrease in leptin levels during development
results in excessive GC production, which can cause ir-
reversible damage to neonatal organs (Tegethoff et al.
2009; Rog-Zielinska et al. 2013; Malaeb and Stonestreet
2014). Importantly, it is not clearly known whether the
phenotypic effects of abnormal leptin or GC signaling
during development is due to one hormone alone or
include altered amounts of signaling by the other hor-
mone as well.

In this minireview, we summarize our current knowl-
edge about the mechanisms of GC-leptin counterreg-
ulation and the potential necessity of such interaction
for maintenance of adult metabolic homeostasis and
for normal development in vertebrates. We will further
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discuss how interpretations of the individual develop-
mental effects of GCs and leptin should be expanded in
light of the interactions between GCs and leptin.

2. GC-induced leptin upregulation and
leptin-induced suppression of GC
production

GCs can elevate leptin levels directly by increasing the
transcription of leptin mRNA. GCs directly induce lep-
tin production via a GC response element in the pro-
moter region of the human leptin gene (De Vos et al.
1998). GC-mediated direct increase in leptin mRNA is
observed in vitro in rat adipose tissue (Masuzaki et al.
1997). GC treatment increases leptin protein synthe-
sis in vitro in adipose tissue from pregnant and non-
pregnant mice and cultured human adipocytes and el-
evates plasma leptin levels in vivo in humans and rats
(Wabitsch et al. 1996; Masuzaki et al. 1997). GC action
on leptin requires glucocorticoid receptor because (1)
siRNA-mediated silencing of glucocorticoid receptor in
human adipocytes inhibited GC-induced leptin mRNA
and protein production (Rhodes and Yamada 1995;
Leal-Cerro et al. 2001; Lee et al. 2014; Madison et al.
2015), and (2) dexamethasone (a GR agonist) increased
leptin mRNA levels in rat adipocytes (Murakami et al.
1995; Slieker et al. 1996). However, the effect of leptin on
GC induction also depends on whether subjects are fed
or fasted. GC/dexamethasone-induced upregulation of
leptin is only observed when subjects are appropriately
fed and not when they are fasted (Dagogo-Jack 1997;
Laferrere et al. 1998). GCs possibly synergize with in-
sulin (which is high only under fed conditions) to ele-
vate plasma leptin levels (Laferrére et al. 2002). Increase
in anorexigenic activity due to leptin production in a
fasted state is likely not favorable for survival, which
might be the reason why GCs induce leptin production
only under a fed state. Leptin levels increase only when
glucocorticoid levels are elevated as a result of the stress
response (e.g., low temperature, carbon dioxide); how-
ever, in some studies, prolonged chronic stress does not
cause change in glucocorticoids, possibly due to habit-
uation of the HPA axis and maintenance of homeosta-
sis, and hence does not result in increased leptin levels
(Gamaro et al. 2008; Nakahara et al. 2010; Macedo et al.
2012; De Oliveira et al. 2014; Koelsch et al. 2016).
Leptin reduces GC production directly by suppress-
ing several components of the HPA axis. Basal and
stress-induced HPA activity is induced by the activity
of CRF receptor type 1 (CRF;R). Leptin infusion sup-
presses stress-induced upregulation of CRF;R in the
paraventricular nucleus (PVN) of rats subjected to 1-
hour treadmill running (Huang et al. 2006; Stengel and
Tacha 2014). Thus, leptin shuts down HPA activity ini-

tially by reducing CRF;R expression in the hypothala-
mus. Interestingly, leptin has completely opposite effect
on CRF receptor type 2 (CRF,R). High leptin infusion
in mice brain increases expression of CRF,R in the ven-
tromedial nucleus of the hypothalamus (VMN; Makino
et al. 1998; Huang et al. 2006). CRF,R can induce
anorexia and the expression of CRF;R is low in obese,
food-deprived, and diabetic rats (with low plasma lep-
tin levels or impaired leptin signaling; Richard et al.
1996; Timofeeva and Richard 1997). Thus, leptin’s CRF-
mediated anorectic activity involves the upregulation
of CRF;R in the VMN. Although there are conflict-
ing reports on leptin’s effect on direct CRF production
from the PVN, the differential regulation of CRF re-
ceptors explains leptin’s role in regulating hunger and
HPA activity (Fig. 1; Costa et al. 1997; Heiman et al.
1997; Raber et al. 1997; Huang et al. 1998, 2006; Inui
1999; Yamagata et al. 2013). Leptin can decrease stress-
induced plasma ACTH levels but there has been no ev-
idence of direct action of leptin on pituitary ACTH in
mammals, although leptin and leptin receptors are ex-
pressed in ACTH-producing cells in the anterior pitu-
itary (Trottier et al. 1998; Oates et al. 2000; Lloyd et al.
2001; Howe and Gertler 2002; Yuen et al. 2004). In the
adrenal gland, leptin downregulates melanocortin type
2 receptor (MC2R) mRNA expression in the zona fas-
ciculata. MC2R binds specifically to ACTH to induce
GC synthesis, and MC2R inhibition impedes GC pro-
duction (Gorrigan et al. 2011; Su et al. 2012). Leptin re-
sulted in a dose-dependent decrease in ACTH-induced
cortisol production in vitro in human adrenocortical
cells (Glasow et al. 1998). Leptin knockout mice were re-
ported to have 85% higher GClevels than basal, and lep-
tin injection into these knockouts reduced GC levels by
40% (Davis et al. 2015). Leptin further reduces adrenal
GC synthesis by reducing expression of the steroid pre-
cursor cholesterol transporter (StAR) and steroid syn-
thesizing enzymes 21-hydroxylase (cyp21a2) and side-
chain cleavage enzyme (P450SCC) in cultured bovine
adrenocortical cells (Kruse et al. 1998). Leptin does not
have a local autocrine or paracrine action on adrenal
glands as human adrenal glands do not express leptin
mRNA but possibly express leptin receptor mRNA be-
cause adrenal gland cells obtained from leptin receptor
knockout (db/db) mice do not show inhibitory action
of leptin (Pralong et al. 1998; Glasow et al. 1998).

3. GC-leptin counterregulation during
food intake and energy expenditure

GCs and leptin each regulate food intake and energy
balance mostly in opposing ways. With respect to food
intake, acute stress (within hours) suppresses appetite
through activation of the anorexigenic CRF,R in the
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VMN but high levels of GCs as a result of prolonged
chronic stress have been shown to induce hyperpha-
gia (by increasing activity of orexigenic neurons AGRP
and NPY), consequently increasing body weight and
the susceptibility to obesity (Fig. 1; Dallman et al.
2006; Sominsky and Spencer 2014). Leptin is primarily
known to suppress appetite and terminate GC-induced
hyperphagia in three ways: (1) by increasing activity of
anorexigenic CRF;R, and POMC and CART neurons;
(2) by decreasing activity of orexigenic AGRP and NPY
neurons in the hypothalamus; and (3) by suppressing
HPA axis activity thereby reducing further GC produc-
tion (Fig. 1; Makino et al. 1998; Huang et al. 2006; Perry
et al. 2019). Hence, the GC-induced direct upregula-
tion of the anorexigenic hormone leptin is a potential
mechanism to counterbalance GC-induced hyperpha-
gia. Similarly, reduction in food intake and depletion
of fat reserved results in a fall in leptin levels, which
further allows GC levels to increase. Rise in GC lev-
els would then stimulate appetite and increase in lep-
tin levels postfeeding, ensuring efficient hormonal, and
energy homeostasis.

Besides negatively regulating appetite, leptin and
GCs also counterregulate lipolysis and lipogenesis,
which eventually modulates energy expenditure and
indirectly controls each other’s plasma levels. During
acute stress, GCs increase available energy by elevating
plasma glucose levels by stimulating glycogen and pro-
tein catabolism in the liver and muscle and by lipolysis
in adipocytes, however, during chronic stress GCs de-
crease lipolysis (Rebuffé-Scrive et al. 1992; Pantoja et al.
2008; Xu et al. 2009; Campbell et al. 2011; Stimson et al.
2017). In vivo and in vitro experiments show that GCs
increase lipolysis when treated for 24-48 h at levels nor-
mally found in the plasma (Rebuffé-Scrive et al. 1992;
Djurhuus et al. 2002; Campbell et al. 2011; Stimson et al.
2017; Mir et al. 2021). However, GCs can decrease lipol-
ysis when treated at stress-induced levels and when the
treatment time exceeds 48 h (Fig. 2; Fain and Saperstein
1970; Slavin et al. 1994; Xu et al. 2009; Campbell et
al. 2011). In addition, GCs boost insulin-dependent de
novo lipogenesis (the process of lipid synthesis from
nonlipid substrates such as glucose) in liver and increase
activity of lipoprotein lipase in adipocytes. Lipoprotein
lipase promotes lipogenesis by releasing fatty acids from
triglycerides circulating in the blood, which are obtain-
able for uptake and storage in adipocytes thereby en-
larging adipose tissue deposits (Fig. 2; Diamant and
Shafrir 1975; Berdanier 1989; Fried et al. 1993; Ottosson
et al. 1994; Wang et al. 2004; Cai et al. 2009; Lee et
al. 2011). Thus, prolonged GC exposure increases food
intake which combined with reduced lipolysis and in-
creased lipogenesis creates an overall positive energy
balance which contributes to GC-mediated weight gain
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Fig. 2 Counterregulatory interaction between GCs and leptin in
regulating lipid metabolism. Solid black lines: stimulatory effect;
dashed black lines: inhibitory effect.

and obesity. The overall higher positive energy balance
in terms of higher adipose tissue content potentially fa-
cilitates leptin production which then suppresses ap-
petite and suppresses GC production. By facilitating
lipolysis and reducing lipogenesis, leptin possibly an-
tagonizes the anabolic actions of GCs on lipids, thereby
demonstrating additional negative feedback between
GCs and leptin. Based on pieces of evidence from in
vitro studies, leptin upregulates lipolysis and downreg-
ulates de novo lipogenesis in white adipocytes by ele-
vating the yield of triglycerides, restricting basal and
insulin-stimulated de novo lipogenesis, and by acceler-
ating oxidation of glucose and free fatty acids (Fig. 2;
Bai et al. 1996; Wang et al. 1999; Ceddia and Curi 2002;
Harris 2014; Koltes et al. 2017). Results from in vivo
injection of leptin in rodents reinforce that leptin in-
fluences adipose tissue metabolism by elevating lipol-
ysis, and by decreasing the activity of lipoprotein lipase
and lipogenesis (Sarmiento et al. 1997; Zhou et al. 1999;
Soukas et al. 2000). Leptin-induced fat reduction may
also be accomplished by apoptosis in white adipose tis-
sue as subcutaneous leptin treatment to ob™/0b™ mice
was reported to stimulate apoptosis in different fat de-
pots (Qian et al. 1998; Della-Fera et al. 2003; Gullicksen
et al. 2003; Della-Fera et al. 2005; Hamrick et al. 2006).
In sum, increased lipolysis and reduced lipogenesis by
leptin result in a fall in lipid levels, which then reduces
leptin production, restores appetite, and normalizes GC
production.

4. GC-leptin counterregulation during
life-history transitions
The counterregulatory action of GCs and leptin exists

during development but occurs mainly in the context of
the surge in hormone levels. Fetal leptin and GC levels
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rise and reach peak levels immediately before birth
in mammals and drop at parturition (Campbell and
Murphy 1977; Jaquet et al. 1998; Yura et al. 1998; Cetin
et al. 2000; Lepercq et al. 2001; Mastorakos and Ilias
2003; Bolten et al. 2011; Rog-Zielinska et al. 2013). High
levels of maternal progesterone act as the main source
of high fetal GClevels. Maternal progesterone enters the
fetal circulation and is converted into GCs by steroido-
genic enzymes in fetal adrenal glands (only 10-20%
of maternal GCs enter fetal circulation; Branchaud et
al. 1986; Ingram et al. 1999; Ishimoto and Jaffe 2011;
Wagner and Quadros-Mennella 2017). High GC levels
then likely act to push leptin to reach peak levels as cor-
tisol and dexamethasone infusion increases plasma lep-
tin levels in fetal sheep (Forhead et al. 2002). In turn,
this surge in leptin levels likely acts to suppress GC
levels as in adults to achieve a new hormonal home-
ostasis during this developmental window. There are
two key functions of such high titer of hormones dur-
ing development. First, both leptin and GC surge are
critical for the maturation of several organs, especially
brain, lungs, and heart. Second, the leptin surge sup-
presses the HPA axis enough to prevent stress-induced
elevation of GCs beyond levels considered normal for
the surge. Leptin-mediated suppression of the HPA axis
has an influential role in protecting neonatal organs
from the harmful effects of excessive GCs by main-
taining a period of reduced adrenocortical response to
stress called the stress-hyporesponsive period (SHRP;
Sapolsky and Meaney 1986; Yi and Baram 1994; Dent
et al. 1999; Gunnar and Donzella 2002; Heinrichs et al.
2002; Tilbrook and Clarke 2006; Schmidt et al. 2009;
Zelena et al. 2011; Ralph and Tilbrook 2016). SHRP
is characterized by stable circulating levels of GC and
the inability of the adrenocortical cells to produce ad-
ditional GCs in response to certain mild to moderate
stressors, which have been shown to stimulate profound
ACTH and GC response in adults (Damato 1992; Cirulli
et al. 1994; Levine 1994; Schmidt et al. 2002, 2003). In-
terestingly, SHRP continues beyond parturition postna-
tally when leptin levels start rising at the beginning of
lactation in neonates reaching peak levels around mid-
lactation and reduces to nonpregnant levels at wean-
ing (Ahima et al. 1998; Johnstone et al. 2000; Slattery
and Neumann 2008). However, GC levels drop below
nonpregnant levels following parturition, maintain low
basal levels, and do not start to rise to nonpregnant lev-
els until around weaning when leptin levels start drop-
ping (Voogt et al. 1969; Concannon et al. 1978; Schmidt
et al. 2003; Maestripieri et al. 2008; Josefson and Skibiel
2021). The reason why leptin levels remain high dur-
ing both prenatal and postnatal SHRP periods, but GC
levels are low during postnatal SHRP is not known
clearly but could involve other metabolic and neuroen-

docrine factors. Postnatal SHRP is not the result of
changes in the HPA axis as the cause of SHRP could
not be explained by reduced ACTH secretion, impaired
signaling through MC2R, reduced activation of GC-
secreting adrenocortical cells, or cholesterol unavail-
ability (Proulx et al. 2001; Salzmann et al. 2004; Walker
et al. 2004; Malendowicz et al. 2007). However, SHRP
was concomitant with the downregulation of steroido-
genic acute regulatory protein (StAR), 21-hydroxylase
(cyp21a2), and peripheral-type benzodiazepine recep-
tor (PBR; which transports cholesterol across the outer
mitochondrial membrane; Walker et al. 2004). As men-
tioned in the section “GC-induced leptin upregulation
and leptin-induced suppression of GC productionGC-
induced leptin upregulation and leptin-induced sup-
pression of GC production,” leptin has been shown
to downregulate steroidogenic enzymes in the adrenal
gland in adults. Hence, it is likely that leptin-induced
downregulation of steroidogenic enzymes in neonatal
adrenal glands contributes to SHRP. The surges in lep-
tin and GCs are contemporaneous, and additional lep-
tin does not decrease baseline GC levels during prena-
tal and postnatal periods but does act to mitigate stress-
induced increases in GC above the normal developmen-
tal surge level (Salzmann et al. 2004).

Some exceptions where SHRP can be disrupted in-
clude exposure to extreme stressors in the early post-
natal period, such as low temperature, ether fumes, or
prolonged maternal separation (>12h), and increase
in glucocorticoid production during SHRP (Viveros et
al. 2010). Maternal separation of postnatal rodents for
12-24 h causes a drop in leptin levels and removes lep-
tin’s inhibitory effect on GC production leading to a
sharp rise in GC and aldosterone (Salzmann et al. 2004;
Viveros et al. 2010). Maternal separation of rat pups in
postnatal day (PND) 10 increased protein expression of
all steroidogenic enzymes in the adrenal glands (StAR,
PBR, 3B-hydroxysteroid dehydrogenase, P450C11B1,
and P450C11B2) beyond the maximum value of about
3-4g/dl (generated by the majority of mild to mod-
erate stressors), thus overriding adrenal hyporespon-
sivity (Shanks et al. 1999; Vazquez and Levine 2005).
Thus, leptin terminates ACTH-stimulated or stress-
induced production of GCs, by a rapid reduction in
expression of StAR and PBR proteins in the neona-
tal/postnatal adrenal gland. As neonatal/postnatal lep-
tin levels are modulated mostly by maternal diet, re-
duction in neonatal leptin levels followed by mater-
nal separation is mostly due to lack of feeding. Lack
of feeding during maternal separation disrupts several
metabolic signals, including insulin and ghrelin lev-
els, expression of AGRP, POMC, CART, and NPY neu-
rons, and in several instances also modulate BDNF ex-
pression that can affect leptin production directly and
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indirectly (Schmidt et al. 2006; Wang et al. 2020).
Restoring tactile stimulation in addition to feeding the
pups during the separation period prevents most of the
peripheral and central consequences of maternal sepa-
ration (Van Oers et al. 1998; Schmidt et al. 2006). Nor-
malizing leptin levels during maternal separation failed
to restore normal GC levels otherwise increased due
to maternal separation but reduced ACTH-induced GC
secretion, and StAR and PBR protein expression during
maternal separation (Salzmann et al. 2004). These ob-
servations suggest that altered metabolic signaling dur-
ing maternal separation results in a sharp fall in lep-
tin level, which partly contributes to increased levels of
GCs.

5. Implications of leptin-GC crosstalk on
brain development

Between GCs and leptin, GCs have more established
roles in brain development as evidenced from stud-
ies using rodents, primates, and humans. GCs are nec-
essary for several critical steps in brain development,
such as myelination, neurogenesis, gliogenesis, cell pro-
liferation, and differentiation (Champagne et al. 2009;
Moisiadis and Matthews 2014). However, high stress-
related levels are deleterious to brain development,
where prenatal stress before the onset of SHRP resulted
in a significant reduction in neurogenesis in rhesus
monkeys and rodents and a significant reduction in
brain cell proliferation in rodents (Charil et al. 2010;
Davis et al. 2013). In the adult human brain, leptin re-
ceptor is expressed in the cortex, amygdala, hippocam-
pus, and thalamus, with the highest expression levels
in the arcuate nucleus (ARC) and the PVN (Couce et
al. 1997; Meister 2000). Gray matter density increases
in regions associated with emotion, awareness, and
motivation, such as the anterior cingulate gyrus, infe-
rior parietal lobule, and the cerebellum when leptin-
deficient humans are supplemented with leptin dur-
ing adulthood (Matochik et al. 2005). At birth, leptin
knockout and leptin receptor knockout mice have aber-
rant levels of growth-associated proteins and synaptic
proteins, extensive neurotransmitter-related abnormal-
ities, blunted myelination, and reduced brain weight,
cortical volume, neuronal size, brain DNA content, and
brain protein content (Ahima et al. 1999). Most of
these aberrations in leptin knockout mice were cor-
rected when leptin treatment was initiated at 4 weeks
and not 9 weeks after birth, thus indicating that the peri-
natal influence of leptin on brain development is age-
dependent (Steppan and Swick 1999). However, lack of
leptin resulted in an unprecedented rise in GC levels
and prolonged overexposure to GCs (up to 9 weeks)
possibly causing extreme damage to the neonatal brain
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that cannot be reversed by subsequent leptin supple-
mentation (Bouret and Simerly 2004; Lu 2007; Delahaye
et al. 2008; Lewis et al. 2019; Steinbrekera et al. 2019).
However, since leptin can strongly influence GC lev-
els during development, it is not clear if reduced lep-
tin or increased GCs were responsible for the altered
brain phenotype in the leptin-deficient mice mentioned
above.

Independent of GC-leptin regulation of each other’s
plasma levels, GC and leptin may interact at periph-
eral levels in brain cells containing receptors for both
hormones. In vivo and in vitro studies in mice re-
ported inhibition of leptin-dependent IL-18 expres-
sion in the hypothalamus by dexamethasone, possi-
bly through modulation of leptin receptor expression
(Smith and Waddell 2002; Hosoi et al. 2003). IL-18
functions through IL-1 receptor and IL-1 receptor sig-
naling does not mediate the physiological effects of
basal leptin signaling on energy balance. However,
when leptin is administered at pharmacological levels,
IL-1 receptor signaling is required for leptin-induced
anorexia and weight loss (Wisse et al. 2007). Future in-
vestigations should focus on central as well as peripheral
effects of GC-leptin interactions on fetal brain develop-
ment because the extent to which an effect attributed to
one hormone is actually due to its role in altering the sig-
naling of the other hormone is not well understood. For
example, neonatal rodent models studying the effect of
GC overexposure on brain development should include
a combination of GC overexposure and leptin supple-
mentation to observe if leptin can override the negative
effects of GCs on phenotypic and behavioral outcomes.

6. Implications of leptin—-GC crosstalk on
developmental programming

A large body of research shows that the risk of de-
veloping diseases in later life is contingent upon early
life conditions (Gluckman et al. 2008; Vaiserman 2011;
Haywarda et al. 2016; Maccari et al. 2017; Acevedo
et al. 2021). Excessive GCs (from maternal stress
and/or exogenous replacements) during the prenatal
and early postnatal period are clearly linked to debil-
itating metabolic outcomes in adults, such as obesity,
hyperglycemia, insulin resistance, leptin resistance, and
diabetes mellitus (Grilo et al. 2021; Monica Shih et al.
2021; Sheng et al. 2021). GCs significantly govern de-
velopmental programming of the fetal brain as stress-
induced neurological disorders during pregnancy such
as anxiety and depression and exposure to stressful
events such as a natural disaster, increase the suscep-
tibility of the infant/child to developing emotional, be-
havioral, and cognitive abnormalities in adulthood (Ilg
et al. 2018). With respect to leptin and developmental
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programming, several animal models have demon-
strated that leptin antagonism or overexposure in
early life led to increased susceptibility to obesity and
metabolic and developmental disorders in adulthood
(Kirk et al. 2009; Granado et al. 2012; Vickers and
Sloboda 2012). Leptin-knockout mice and pregnant rats
with low leptin levels due to prenatal undernutrition
demonstrated leptin resistance, hyperinsulinemia, and
hypertriglyceridemia in adulthood (Krechowec et al.
2006). Administration of leptin reverses all these phe-
notypes in leptin-knockout mice (Chehab et al. 1996;
Steppan and Swick 1999; Huang et al. 2008; Da Silva et
al. 2017). Growth rate, body composition, and organo-
genesis were amended following neonatal leptin supple-
mentation to female rats from malnourished mothers
(Vickers et al. 2005; Attig et al. 2008). Leptin knock-
out mice also demonstrated reduced locomotor activ-
ity, and leptin receptor knockout mice displayed neu-
robehavioral anomalies similar to depression, anxiety,
and psychosis (Sharma et al. 2010). Leptin receptor
knockout mice had elevated levels of immune and
inflammation-related compounds in the hippocampus
concomitant with schizophrenia, autism-spectrum dis-
orders, and bipolar disorder. Leptin supplementation at
pharmacological doses during the first ten days of lacta-
tion in mice resulted in increase in anxiety-like behavior
in adults (Fraga-Marques et al. 2009). Because plasma
levels of GCs and leptin are tightly controlled by each
other, studies on the development of adult metabolic
disorders due to maternal stress or growth restriction
should be conducted both in light of leptin deficiency
and glucocorticoid overexposure. Perhaps leptin sup-
plementation can override the harmful effects of GC
overexposure or prenatal stress on the development of
adult metabolic disorders.

7. Conclusion and future studies

In this review, we have summarized mechanisms of
GC-leptin interactions and the possible effects those in-
teractions on development. GCs and leptin are neces-
sary to regulate appetite and energy expenditure, but
chronic stress-induced GC levels can derail metabolic
homeostasis. To maintain metabolic homeostasis, GCs
upregulate leptin production that can suppress GC pro-
duction directly. Each hormone also antagonizes each
other’s metabolic actions. This counterregulation be-
tween leptin and GCs to regulate metabolism is con-
served across vertebrates. We have also suggested the
importance of GC-leptin interdependence during fe-
tal development. Adequate levels of leptin and GC are
required for normal development of fetal organs, es-
pecially the brain. However, excessive GC levels from
maternal stress and/or exogenous treatments negatively

impact organogenesis causing several neurological, be-
havioral, and metabolic disorders. Leptin plays a cru-
cial role in maintaining appropriate GC levels by reg-
ulating a period of stress hyporesponsiveness (SHRP)
during which the adrenal gland is insensitive to most
stressors. Withdrawal/reduction of the leptin levels dur-
ing development due to maternal separation or ma-
ternal undernutrition may contribute to loss of SHRP
and thus exposure of fetal organs to excessive GCs. In
vivo studies tracking the long-term effects of mater-
nal GC excess on the development of adult disorders
did not fully account for the possible effects of altered
leptin levels. Future studies should include the impact
of leptin sufficiency/deficiency when investigating the
mechanistic basis of GC excess on brain development
and on the programming of adult diseases. Similarly,
investigations focused on understanding leptin’s role
in organ maturation and developmental programming
should account for GC excess and deficiency. The neg-
ative feedback loop between GCs and leptin has mostly
been studied with respect to appetite regulations and
metabolic homeostasis. Future studies should focus on
understanding the role of leptin-GC counterregulation
on growth, reproduction, and immune function.
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